|
Atomistry » Helium » Production | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomistry » Helium » Production » |
Helium ProductionProduction
Helium is extracted by from natural combustible gas. Dried gas, purified from CO2, is supplied to heat exchanger and separator system. Since helium has a lower boiling point than any other element, low temperature and high pressure are used to liquefy nearly all the other gases (mostly nitrogen and methane) resulting in crude helium gas purified by successive exposures to lowering temperatures. Throttling to a pressure of 2 MPa and distillation under temperature -28°C, -41°C and -110°C makes all hydrocarbons separated away; under pressure of 1.2 MPa, nitrogen and other gases are precipitated out, which results the gaseous mixture enriched by 3% helium. The last throttling to the pressure of 1.0 MPa makes the helium concentration increased to 30-50%, and then, cooling by boiling nitrogen at -203°C and 0.04 MPa raises it to 90%. Crude Helium (70 - 90 vol. %) is rectified of hydrogen (4 - 5%) at 650-800°K and dried by silica gel. The fine rectification is completed by cooling crude helium boiling under vacuum. Adsorption on activated charcoal in adsorbers is used as a final purification step, usually resulting in 99.995% purity of Grade A helium. The purity of Grade B helium purification is about 99.80%
Helium Isolation
The chief available sources of helium are the air, certain minerals, and a few mineral springs. Originally the cheapest way of preparing helium was, undoubtedly, by heating a suitable mineral, e.g. monazite sand or cleveite, either alone or with dilute sulphuric acid.
In carrying out an experiment the mineral is introduced into the iron tube and the whole apparatus is evacuated. On heating the tube a slow evolution of gas commences and continues for many hours. When the pressure within the apparatus becomes equal to the atmospheric pressure the gas is collected in the reservoir R, until the evolution practically ceases. R is then shut off and the residual gas removed from the other part of the apparatus and transferred either to R or to another reservoir. A modification of this method consists in heating the mineral in an atmosphere of carbon dioxide (prepared from magnesite by heating) and collecting the gas over potash. It is stated that the best results are obtained by heating the mineral to 1000°-1200° C. in a porcelain tube. Another method which is more expeditious and gives a better yield is to heat the mineral with about its own weight of acid potassium sulphate in a hard glass tube. The mixture is very liable to froth, and the tube should not be more than half full.
In performing an experiment the flask and the contained mineral (which must be finely powdered) are freed from air by introducing successive small quantities of water through the funnel F and pumping away the water-vapour. Dilute sulphuric acid (1:8), which has been boiled just previously to expel air, etc., is then run in and boiled with the mineral for about 30 minutes. When the gas evolved at atmospheric pressure has been collected, the reservoir is shut off and the residual gas removed from the rest of the apparatus through the pump and transferred to the reservoir. As 100 grams of cleveite will give over 500 c.c. of gas and can be obtained for about 10s., the cost of preparation of crude helium by this method works out at about £1 per litre. Other minerals available for the preparation of helium by this-method (i.e. which yield from 1.0 to 1.5 c.c. or more of gas per gram) are fergusonite, samarskite, and monazite - monazite sand was used by Onnes as the source of the large quantities of helium required for his researches upon its liquefaction.
An excellent method of obtaining helium, which would probably prove comparatively inexpensive where the necessary plant is available, is that devised by Claude. The apparatus used, consists essentially of a modification of the column used for the isolation of pure oxygen and nitrogen by the fractionation of liquid air, whereby the most volatile gases are collected apart. Helium Purification
On account of its great volatility at very low tempera tures, helium is more easily purified than any other member of the group. The usual procedure is to remove nitrogen and hydrogen, if present, by passing the crude helium over a heated mixture of quicklime and magnesium filings, and then over red-hot copper oxide. In the case of gas from cleveite or monazite, which contains no appreciable amount of other inert gases, the residue from this operation is already fairly pure helium. Should the gas contain argon, as, e.g., when obtained from mineral springs, it is necessary to cool it to a low temperature by means of liquid air boiling under reduced pressure - any nitrogen or argon present is liquefied, and helium can be pumped off. Neon, if present, can be removed by cooling the gas with liquid hydrogen. At this temperature all gases are liquefied except helium.
An investigation of the relative degrees of absorption of helium, neon, hydrogen, and nitrogen by cocoa-nut charcoal
at low temperatures has been made by Claude. The results are given in the preceding table, where the columns A give the volume in c.c. of gas absorbed by 100 gm. of charcoal, while the columns B give the corresponding gas pressure in mm. of mercury. Leduc states that the absorption of helium in charcoal follows Henry's law, and in this respect, therefore, it differs from other gases. From a consideration of Claude's figures it will be evident that while the method can give a sharp separation of helium from hydrogen and nitrogen and is, consequently, excellent for the purification of helium from minerals, it can only separate helium and neon if used as a method of fractionation. Small amounts of helium in a vacuum tube may be purified by taking advantage of the fact that the finely divided platinum deposited upon the walls of the tube by the prolonged passage of a discharge can absorb helium in considerable amount. Nitrogen, argon, etc., remain unabsorbed, and may be pumped out of the tube, while the helium can then be driven out of the platinum deposit by heating the tube with a free flame.
|
Last articlesZn in 9JYWZn in 9IR4 Zn in 9IR3 Zn in 9GMX Zn in 9GMW Zn in 9JEJ Zn in 9ERF Zn in 9ERE Zn in 9EGV Zn in 9EGW |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |